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Gut microbiome and dietary 
fibre intake strongly associate 
with IgG function and 
maturation following SARS-
CoV-2 mRNA vaccination

The first study to investigate potential 
associations between gut microbiota 
composition and SARS-CoV-2 vaccine 
immunogenicity was recently published 

in Gut.1 This study demonstrated a 
statistically significant reduction in alpha 
diversity and a shift in gut microbiota 
composition following BNT162b2 vacci-
nation, characterised by reductions in 
Actinobacteriota, Blautia, Dorea, Adler-
creutzia, Asacchaobacter, Coprococcus, 
Streptococcus, Collinsella and Rumino-
coccus spp and an increase in Bacteroides 
cacaae and Alistipes shahii. Our prospec-
tive observational study (n=52; figure 1A, 
online supplemental table S1) similarly 
showed a shift in gut microbiota after the 
first BNT162b2 vaccine dose (p=0.016; 
online supplemental figure S1A), including 
a reduction in Actinobacteria, Blautia spp 
(p<0.01; figure  1B), and alpha diversity 
(p=0.078; online supplemental figure 
S1B). Our data support the findings by Ng 
et al,1 reinforcing the link between SARS-
CoV-2 mRNA vaccine immunogenicity 
and the gut microbiota.

Ng et al1 also identified strong asso-
ciations between baseline gut micro-
biota composition and serological IgG 
responses to BNT162b2 vaccination. 
After stratifying participants as low or 
high vaccine responders, they showed 
higher abundances of Eubacterium rectale, 
Roseburia faces, Bacteroides thetaiotao-
micron and Bacteroides spp OM05-12 
were associated with stronger BNT162b2 
vaccine responses. Correspondingly, in 
our cohort, several baseline bacterial taxa 
significantly differed between participants 
with low versus high BNT162b2 vaccine 
responses. Specifically, we observed higher 
baseline counts of Prevotella, Haemoph-
ilus, Veillonella and Ruminococcus gnavus 
taxa in participants with higher RBD and 
Spike competitive binding antibody and 
IgG levels (p<0.01; figure  1C). Addi-
tional studies are needed to ascertain the 
clinical significance of these findings. 
However, together with Ng et al,1 these 
findings further support that differences 
in microbiome composition and/or func-
tion modulate antibody responses to 
SARS-CoV-2 vaccination. Interestingly, 
a study recently discovered that SARS-
CoV-2 specific T cells can also cross-react 
with microbial peptides from commensals 
(including Prevotella spp) and undefined 
faecal lysates.2 Considering that indi-
viduals with milder COVID-19 showed 
higher frequencies of cross-reactive SARS-
CoV-2 T cells3 it is plausible that microbe-
based stimulation of SARS-CoV-2-reactive 
T or B cells could modulate SARS-CoV-2 
vaccine responses. Consistent with Ng 
et al1 we demonstrated an association 
between a gut microbiome signature at 
baseline and SARS-CoV-2 vaccine immu-
nogenicity; however, the specific bacterial 
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Figure 1  Impact of the mRNA SARS-CoV-2 BNT162b2 vaccine on gut microbiota composition as well as the gut microbiome and dietary factors that 
affect BNT162b2 vaccine response. (A) Schematic of the study design and blood and stool sample collection timepoints. (B) A significant reduction in 
Actinobacteriota (p<0.0001), Anaerostipes (p=0.00161) and Blautia (p=0.00103) and an increase in Lachnoclostridium (p=0.00179) were observed 
after the first BNT162b2 vaccine. (C) Heat-map depicting several significantly higher (red) or lower (blue) (*p<0.05; Wald test) baseline microbial 
counts in high (quartile 4) vs low (quartile 1) BTN162b2 vaccine responders across several immune parameters. (D) Several gut microbiota species 
were significantly positively or negatively associated (p<0.01; Wald test) with higher total relative fractional avidity after the second dose of the 
BNT162b2 vaccine in a subset of participants (n=15). Refer to online supplemental table S2 for the specific species names and p values. (E) Baseline 
total branched-chain fatty acid (BCFA) concentrations were negatively correlated with RBD IgG (p=0.02, r=−0.35; Spearman rank) and Spike IgG 
levels (p=0.017, r=−0.36; Spearman rank), isovaleric acid concentrations were negatively associated with RBD IgG (p=0.015, r=−0.37; Spearman 
rank) and competitive binding antibody (p=0.026, r=−0.34; Spearman rank), and Spike IgG (p=0.013, r=−0.38; Spearman rank) and competitive 
binding antibody levels (p=0.034, r=−0.32; Spearman rank), and baseline isobutyric acid concentrations were negatively associated with Spike IgG 
levels (p=0.047, r=−0.29; Spearman rank). (F) High dietary fibre consumers had a significantly greater change in total relative fractional avidity 
from the first to second BNT162b2 dose compared with low and moderate dietary fibre consumers (p=0.029; Mann-Whitney). (G) High dietary fibre 
consumers experienced a reduction in total BCFAs (p=0.164, adjusted t-test), isovaleric (p=0.189, adjusted t-test) and isobutyric acid (p=0.213 
adjusted t-test) concentrations (−0.186 to –0.198 and −0.177 mean fold change, respectively) after BNT162b2 vaccination, whereas low dietary fibre 
consumers experienced an increase in total BCFAs, isovaleric and isobutyric acid concentrations (0.08, 0.08 and 0.08 mean fold change, respectively).

taxa associated with vaccine responses 
differed between cohorts. This is possibly 
due to differences in geography (Hong 
Kong vs Canada), dietary habits and/or 
microbiome sampling/analysis methods.

Moving beyond antibody levels, 
we explored the associations between 
BNT162b2 vaccine-induced antibody 
avidity maturation (ie, the ratio of low 
to high IgG antibody avidity to the Spike 
protein4 5) and specific gut microbiome 
signatures, in a subset of participants 
(n=15). Multiple bacterial taxa were 
negatively (ie, Bifidobacterium bifidum, 
Acidaminococcus intestini) or positively 
(ie, Bifidobacterium animalis, Bacteroides 
plebeius, Bacteroides ovatus) associated 

with enhanced antibody avidity (p<0.01; 
figure  1D), with several species having 
known immunomodulatory properties. 
Most notably, Bacteroides ovatus induces 
increased production of IgM and IgG 
antibodies specific to human cancer cells.6 
Additionally, Bifidobacterium animalis can 
significantly increase vaccine-specific IgG 
production after seasonal influenza vacci-
nation.7 Thus, these observations provide 
further evidence that gut bacterial species 
may enhance functional binding of IgG 
elicited by BNT162b2 vaccination.

We also examined the potential link 
between the functional capacity of the 
gut microbiome and habitual diets, with 
BNT162b2 vaccine response. Our data 

suggest that microbial-derived branched-
chain fatty acids (BCFA) isovaleric and 
isobutyric acids, produced via protein 
fermentation, may reduce vaccine 
responses (p<0.05; figure  1E). BCFA 
concentrations are known to be higher 
in patients with immune-mediated condi-
tions such as inflammatory bowel disease8; 
however, little is known about the mech-
anisms by which BCFAs modulate inflam-
mation or antibody-mediated vaccine 
responses. Interestingly, Megasphaera 
spp, which were negatively associated 
with vaccine responses, are prominent 
isovaleric and isobutyric acid producers.9 
Future research is needed to explore the 
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potential impact of BCFAs on SARS-
CoV-2 vaccine immunogenicity.

Lastly, no research has elucidated the 
role distinct dietary intakes have on SARS-
CoV-2 vaccine responses. Therefore, we 
determined whether differing dietary fibre 
(microbial substrate) intakes affected IgG 
binding strength. We observed that the 
change in avidity between the first and 
second BNT162b2 dose was significantly 
greater in high fibre consumers (p=0.029; 
figure  1F). This further suggests that 
dietary fibre intakes may modulate 
BNT162b2 vaccine response maturation. 
Interestingly, high fibre consumers also 
experienced a reduction in total BCFAs 
post vaccination (p=0.164; figure  1G), 
signifying a potential mechanistic link 
between fibre intake, BCFA production 
and SARS-CoV-2 vaccine immunogenicity.

In summary, these data, while explor-
atory, validate findings from Ng et al,1 
reinforcing a potential link between the 
gut microbiome and SARS-CoV-2 mRNA 
vaccine antibody responses. This study 
further expands on these findings and 
shows, for the first time, that BCFA levels 
may negatively impact, while dietary 
factors, such as fibre intake, may enhance 
BNT162b2 immunogenicity. Studies are 
currently underway to explore the thera-
peutic benefit of microbiome-modulating 
interventions to enhance SARS-COV-2 
vaccine immunogenicity.10 Considering 
that the effectiveness of most SARS-CoV-2 
vaccines are high, but relatively short-
lived, especially in vulnerable age and 
medical groups, the gut microbiome could 
represent a simple, yet powerful way to 
optimise long-term protection or improve 
recovery after infection.
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